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Prediction of the Retention Behavior of lonizable 
Compounds in Reversed-Phase LC Using Factor-
Analytical Modeling 

Abstract 

Principal component factor analysis (PCFA) and target 
transformation factor analysis (TTFA) are used to examine the 
reversed-phase high-performance liquid chromatographic retention 
behavior of some neutral, basic, and acidic organic compounds in 
water-methanol-acetonitrile solvent systems at pH 7, 5, and 3. The 
ratios of the pairs of HA/A – (acid) or B / B H + (base) are controlled 
by the buffered mobile phases, and this permits the factor 
analytical model to be extended to ionic compounds. Four factors 
are sufficient to reproduce the data within an error margin of 3%. 

Introduction 

Accurate prediction of retention behavior in high-perfor­
mance liquid chromatography (HPLC) would allow the rapid 
development of optimal HPLC separation methods; this is a 
major reason for the interest in predicting retention behavior 
in reversed-phase HPLC. Differential migration of solutes is 
the basis of separation in reversed-phase HPLC; however, many 
of the fundamental variables that determine this differential mi­
gration are not well understood. This is the principal reason for 
the current relative lack of success in making reliable retention 
predictions. A factor analytical model for predicting retention 
that does not require knowledge of the mechanism of HPLC re­
tention was developed (1); it was reported that three factors 
were required to predict the reversed-phase HPLC retention be­
havior of neutral compounds in ternary solvent systems. The 
practical consequence of this approach is a dramatic reduc­
tion in the number of mobile phases that must be used to com­
pletely characterize the retention behavior of new, previously 
unstudied solutes. In a worst case demonstration, the paper 
shows that the study of retention in three "key" mobile phases 
permitted the prediction of retention in 35+ other combina­
tions of water-methanol-acetonitrile with an RMS error of ap­
proximately 5%. Precision improved dramatically with the ad­
dition of only a few more mobile phases and reached 
measurement precision when five mobile phases were studied. 

* Author to whom correspondence should be addressed. 

It is important that the factor analytical methods described 
here be understood to reduce rather than increase the amount 
of work needed to reproduce results obtained on a column of 
the same manufacture or even between columns of different 
types. As previously shown, the method can permit intercolumn 
transfer of methods with a few measurements on the new 
column or batches of the same nominal column materials (2). 

General trends in retention change can be predicted for ion-
izable species as the mobile phase buffer pH changes and ion­
ization increases or decreases. The goal of this work was to extend 
the previously reported success in the prediction of the reversed-
phase liquid chromatographic retention of neutral species to 
the prediction of the behavior of ionizable species. The prediction 
of reversed-phase LC retention using factor-analytical methods is 
reported for solutes that are ions in a pH range from 3 to 7 
units. The fundamental question involved the continued factor 
analyzability of the retention behavior and the broadening of 
the power of prediction. For that reason, the number of careful 
retention measurements made is in excess of those necessary to 
make predictions on systems previously studied or known to be 
factor analyzable (2). 

The retention behavior of ionizable compounds at each pH 
level was investigated using principal component factor analysis 
(PCFA) and target transformation factor analysis (TTFA). PCFA 
is a least-squares method used for eigenanalysis of a data matrix. 
The first eigenvector is extracted from the data matrix to remove 
as much of the total variance (the sum of the magnitudes of the 
projections of all data points on the eigenvector) as possible. The 
second eigenvector is orthogonal to the first one and is com­
puted such that the maximum of the remaining variation is ex­
tracted. This procedure is repeated until all the variation in the 
data matrix is described in terms of the extracted eigenvectors. 
Each eigenvector is associated with an eigenvalue. The larger the 
eigenvalue, the more important the eigenvector is. If there are 
no experimental errors in the data, PCFA produces the exact 
number of eigenvectors (n) that define the data space. When real 
data are examined by PCFA, a larger number of eigenvectors, m 
(the smaller of the number of the rows or columns in the data 
matrix), is produced because of experimental errors. One main 
task of PCFA is to determine how many factors are significant 
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and how many factors are to be considered as noise. Once the 
number of significant factors has been determined, the data 
space can be described using the smaller dimensions. The result 
of PCFA at this stage is an abstract solution that describes re­
tention behavior using a minimum of variables without any 
reference to a physical mechanism. 

TTFA is a least-squares method of finding a 'valid' vector 
giving the best fit to a target vector hypothesized to be a real 
factor; in this context Valid' refers to any vector that is located 
in the space defined by the significant eigenvectors. Real vec­
tors, that is, vectors defined by the values of the real functions 
which are responsible for retention, are valid vectors, as are the 
actual columns of the data itself. The data columns are often 
called 'typical' factors. All valid vectors are linear combinations 
of the significant eigenvectors. If there is a valid vector rea­
sonably similar to the target vector, then the target vector may 
be a real factor, otherwise it is not. The objective of TTFA is to 
present the data in terms of physically meaningful vectors in­
stead of abstract eigenvectors. However, finding a complete set 
of physically meaningful vectors that span the data space is 
not a simple task. 

Even if the complete set of real factors was unknown, pre­
dictions can still be made in a abstract manner by using the 
data columns. The results of target testing on the data columns 
(typical factors) should be always successful because they always 
lie in the data space if the effects of noise on the data are ne­
glected. If η factors are required to describe the data space, then 

the data points can be located by an appropriate set of η typical 
factors which span the data space. Some sets of typical factors 
may span the data space better than others because not all of 
the columns may require η dimensions, that is, not all of the 
real factors (mechanisms) controlling retention may be re­
quired to explain retention in some of the mobile phases or for 
some of the compounds. A combination test can be used to find 
the best η typical factors to define the data space. The re­
maining data columns can be expressed in terms of the data 
columns chosen as the representative typical factors. For ex­
ample, the xth data column factor, D x , can be expressed by a 
linear equation: 

Table I. Compounds Used at pH 7, pH 5, and pH 3 

No. Compound pH 7 

Mobile phase 

pH 5 pH 3 

1 Acetopheonone X X X 
2 Benzene X X X 
3 Benzonitrile X X X 
4 o-Dichlorobenzene X X X 
5 p-Dinitrobenzene X X X 
6 Methylbenzoate X X X 
7 2-Phenylethyl alcohol X X X 

8 Toluene X X X 
9 Caffeine X X X 
10 4-Chloroaniline X X X 
11 Ν,Ν-Dimethylaniline X X X 
12 2,6-Dimethylaniline X X X 
13 3,4-Dimethylaniline X X X 
14 Pyridine X X X 
15 4-tert-Butylpyridine X X X 
16 2-Aminopyridine X X X 
17 Quinoline X X X 
18 3-Aminoquinoline X X X 
19 Benzoic acid X 
20 p-Fluorobenzoic acid X 
21 4-Aminobenzoic acid X 
22 2-Chlorobenzoic acid X 
23 4-Chlorobenzoic acid X 
24 2,5-Dimethylbenzoic acid X 
25 3,4-Dimethylbenzoic acid X 
26 Salicylic acid X 

The extent of the ionization of acids and 
bases during a chromatographic analysis can 
be controlled by varying the pH of the mo­
bile phase. Increasing the pH increases the 
ionization of the acids and decreases the ion­
ization of the bases. In reversed-phase LC, an 
increase in the ionization of the sample de­
creases the retention of the sample because 
the ionic form is more hydrophilic than the 
molecular form. If a buffered mobile phase is 
used in a reversed-phase LC system, the ra­
tios of the pairs of HA/A– or B/BH + should be 
controlled by the constant pH of the mobile 
phase, and this should permit the factor an­
alytical model to be extended to ionic com­
pounds. 

In the factor analytical model, it is as­
sumed that the natural logarithm of the ca­
pacity factor (In k') can be expressed as a 
linear sum of product terms of π functions of 
solvent composition and η functions of solute 
structure as shown in Equation 2: 

Eq 2 

where fc is a function of solute structure, fS 

is a function of the solvent composition, and 
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Eq l 
where D 1 , D 2 , . . . D n are the chosen representative typical fac­
tors, and P 1 ,P 2 , . . . P n are projections of D x onto these repre­
sentative typical factors. Therefore, prediction can be made 
from Equation 1 without knowing any of the physically mean­
ingful factors that control retention. 

Theoretical 
There are two main processes controlling the retention of 

acids and bases in a reversed-phase LC system: the extent of the 
ionization of acids and bases and the distribution of the sample 
compounds between the mobile phase and the stationary phase. 

Under suitable conditions of pH, the acids (HA), and bases (B) 
are in equilibrium with their ions: 
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η is the number of significant factors. This is consistent with 
most of the retention theories that have been proposed in re­
versed-phase HPLC. 

The experimental retention data can be represented in matrix 
notation as D, where dij, an element of D, is the natural loga­
rithm of the capacity factor of compound i in the mobile phase 

j . The data matrix D may be factored, using singular-value de­
composition, into three matrices, U, S, and VT (Equation 3): 

Solvent no. 

% Volume 

Solvent no. Water Methanol Acetonitrile 

1 60 40 0 
2 60 30 10 
3 60 0 40 
4 50 50 0 
5 50 25 25 
6 50 12.5 37.5 
7 50 37.5 12.5 

CO
 50 0 50 

9 40 60 0 
10 40 45 15 
11 40 30 30 
12 40 15 45 
13 30 70 0 
14 30 52.5 17.5 
15 30 35 35 
16 30 17.5 52.5 
17 20 80 0 
18 20 60 20 
19 20 40 40 

Figure 1. The solvent composition map. The vertical scale shows the percent volume of water and the 
horizontal scale shows the ratios of acetonitrile and methanol in the mobile phase. The numbers shown 
in the map are the solvent numbers listed in Table II. 
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I Table II. Mobile Phases Used at pH 7, pH 5, and pH 3 

Eq 3 

where U is an r × r orthogonal matrix containing the eigen­
vectors that define the compound retention space, V is a c χ c 
orthogonal matrix containing the eigenvectors that span the 
mobile phase retention space, and S is an r × c diagonal matrix 
that contains the singular values. The singular values are the 
square roots of the eigenvalues of the matrix D T D. 

The data matrix may be reproduced using η ≤ m factors (the 
smaller number of r and c). When the correct value of η is em­
ployed, the agreement between the data matrix and the repro­
duced data matrix should be within experimental error. This 
procedure compresses the data space from m dimensions to η 
dimensions. When the correct value of η is determined, Equa­
tion 4 may be used to reproduce the data: 

Eq 4 
where D is the reproduced data matrix using η factors only, U 
contains the first η columns of matrix U, S contains the first η 
rows and columns of matrix S, and V T contains the first η 
rows of matrix VT where the superscript Τ denotes the trans­
posed matrix. After the correct number of significant factors has 
been determined, the significant row eigenvectors, U, may be 
used to perform target testing on the test vectors. 

The target transformation may be used to find new axes that 
are aligned with fundamental parameters of the mobile phases 
(or compounds). The data points can be designated by the co­
ordinates on any set of η axes that span the data space. The 
newly transformed axis X j , which is called the predicted vector, 
can be obtained from Equation 5: 

Eq 5 

where X j is a test vector that is suspected to 
be a real factor. If the agreement between X j 

and X j is within the experimental error, then 
this test vector is tentatively accepted as a 
real factor. 

Columns of the experimental data may be 
used as test vectors. A matrix, D ‡, which con­
tains η typical factors (columns) of the data 
matrix, may serve as a target test matrix. Al­
though each typical factor lies in the data 
space and obviously will yield a successful 
test, it is not guaranteed that all combina­
tions of η typical factors will successfully re­
produce the data as only certain combina­
tions may span the total factor space. 
Therefore, a combination test is performed on 
the data matrix to identify the set of typical 
factors that best reproduces the data matrix. 
This combination set, D, is called the key 
combination set, and the solvents (columns) 
contained in the key combination set are 
called the key solvents. This is the approach 
we have adapted to achieve the retention be­
havior of the solvents used in this study. 
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The transformation matrix associated with the key solvents 
can be obtained using Equation 6: 

Eq 6 

where λ contains the η largest eigenvalues of the matrix D T D. 
The derivation of Equation 6, which was used to get the trans­
formation matrix T, was described by Malinowski and Howery (3). 

A projection matrix, P, containing the projections of the other 
solvents on the key solvents can be obtained using Equation 7: 

Eq 8 

where Ď is the reproduced data. Once the solvent projections 
are available, only η reversed-phase HPLC retention measure-

No. of % of Variance Reduced Indicator Probability 
factors Eigenvalue explained eigenvalues function (x10 2) test 

pH 7 Data excluding the acid compounds 
1 4.90e+02 89.86 1.43e+00 0.127 0.000 
2 5.20e+01 9.53 1.70e-01 0.036 0.000 
3 3.02e+00 0.55 1.11e-02 0.012 0.000 
4 1.39e-01 0.03 5.78e-04 0.011 0.057 
5 9.08e-02 0.02 4.33e-04 0.008 0.024 
6 2.50e-02 0.00 1.38e-04 0.007 0.116 
7 1.32e-02 0.00 8.49e-05 0.007 0.163 
8 1.01e-02 0.00 7.63e-05 0.006 0.120 
9 4.61e-03 0.00 4.19e-05 0.006 0.194 

10 2.80e-03 0.00 3.11e-05 0.006 0.220 

pH 5 Data excluding the acid compounds 
1 4.69e+002 89.07 1.37e+00 0.130 0.000 
2 5.35e+001 10.15 1.75e-01 0.040 0.000 
3 3.68e+000 0.70 1.35e-02 0.015 0.000 
4 2.36e-001 0.04 9.85e-04 0.012 0.029 
5 1.20e-O01 0.02 5.71e-04 0.008 0.015 
6 3.87e-002 0.01 2.13e-04 0.006 0.035 
7 1.66e-002 0.00 1.06e-04 0.005 0.037 
8 4.68e-003 0.00 3.54e-05 0.005 0.142 
9 3.36e-003 0.00 3.05e-05 0.004 0.089 

10 1.02e-003 0.00 1.14e-05 0.004 0.248 

pH 3 Data 
1 4.85e+02 77.90 9.82e-01 0.167 0.000 
2 1.30e+02 20.95 2.90e-01 0.044 0.000 
3 5.81e+00 0.93 1.42e-02 0.022 0.000 
4 6.74e-01 0.11 1.83e-03 0.018 0.030 
5 2.82e-01 0.05 8.54e-04 0.017 0.068 
6 1.53e-01 0.02 5.22e-04 0.015 0.092 
7 9.31e-02 0.01 3.58e-04 0.015 0.103 

8 7.44e-02 0.01 3.27e-04 0.012 0.046 
9 2.80e-02 0.00 1.41e-04 0.012 0.107 

10 1.50e-02 0.00 8.82e-05 0.011 0.136 

ments are needed for each compound to predict the retention 
behavior in all the solvents. 

Experimental 

Instrumentation 
The retention data were collected using a Perkin-Elmer 

Series 4 LC pump (Norwalk, CT), a PE ISS-100 autosampler, 
and a PE LC-235 diode-array detector. A PE LCI-100 integrator 
and a Hewlett-Packard 3390A integrator (Wilmington, DE) 
were used to measure the retention times. 

Columns 
The data were collected using PE 3 × 3 C 1 8 cartridge 

columns; the columns were especially prepared by the manu­
facturer in two batches; each batch was prepared from the 
same lot of packing material at the same time. Each column 

was characterized by running eight com­
pounds in three mobile phases before use. 
The columns were sorted, and the most sim­
ilar were selected to collect the retention 
data. The standard characteristics of the 
column in use were periodically examined, 
and the column was replaced when a change 
of more than 3% was observed. 

Materials and Procedures 

The solutes and mobile phases used at pH 
7, 5, and 3 are listed in Tables I and II, re­
spectively. The solvent compositions are also 
graphically shown in Figure 1. All retention 
measurements were collected at 25°C using 
a wavelength of 255 nm. In order to maintain 
constant column characteristics, a Whatman 
ODS-2 C 1 8 precolumn was placed between 
the pump and the autosampler to presaturate 
the mobile phase with stationary phase. Sam­
ples were dissolved in the mobile phase for 
injection. The retention time of each com­
pound in each mobile phase was measured at 
least three times, and the average standard 
deviation was always less than 1.5%. Mobile 
phases were prepared from commercial 
HPLC-grade solvents. The composition of 
the mobile phase was determined by dividing 
the mass of each solvent in the mobile phase 
by its density and using this value to com­
pute the volume percentage of each solvent. 
It is customary to report the composition of 
mobile phases as the volume percent of each 
component and to use the volume before 
mixing. 

A phosphate buffer was used to control the 
pH of the mobile phase. The pH of a mixed 
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Eq 7 

Then, the data matrix can be reproduced using Equation 8: 

I Table III. Results of Principal Component Factor Analysis 
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aqueous-organic solvent was taken as the 
same as the pH of the aqueous fraction in 
this study. The total ionic strength of the 
buffered mobile phase was controlled at 
5mM. Void volumes were determined as the 
elution volume of ammonium nitrate. 

Computations 
PCFA and TTFA were performed using 

MATLAB (Mathworks, Inc.; Natick, MA) 
script programs. 

Data preparation 
In order to generate the data matrix for 

factor analysis, the data were prepared as 
follows: 

• The mean value of the retention time 
measurements was calculated. 

• The mean retention time was converted 
to a capacity factor, k' using Equation 9: 

Eq 9 

where tR is the retention time of each 
compound in each solvent, t0 is the void 
time of ammonium nitrate, and F is the 
flow rate of the mobile phase. 

• The natural logarithm of the capacity 
factor was calculated. 

The acidic compounds were excluded from 
both the pH 7 and the pH 5 data because 
they were essentially nonretained. 

Results and Discussion 

Column stability 
There were two reasons to characterize 

the columns before using them. First, the 
characteristics of two C 1 8 columns provided 
by the same manufacturer are not guaran­
teed to be exactly the same, and because of 
column degradation in conditions of extreme 
pH, a single column may not be sufficiently 
stable to collect all of the data at the accuracy 
level required in these experiments. Two 
batches of columns (five columns per batch) 
were characterized. Benzene, benzonitrile, 
dimethyl phthalate, 3,4-dinitrotoluene, 
m-fluoronitrobenzene, o-fluoronitroben-
zene, sec-phenylethyl alcohol, and 3-phenyl-
1-propanol were used as standard solutes. 
The characteristics of each column were 
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Table IV. Key Combination Set and Reproduction Error Based on Four Factors 
at Each pH Level 

Key solvent Key solute 

PH % Volume* 
Reproduction 

error (%) Compound 
Reproduction 

error (%) 

7 60:40:00 
50:25:25 
50:00:50 

30:52.5:17.5 

1.6 o-Dichlorobenzene 
Caffeine 

2,6-Dimethylaniline 
Pyridine 

1.8 

5 60:30:10 
50:50:00 
50:00:50 

30:52.5:17.5 

1.8 o-Dichlorobenzene 
p-Dinitrobenzene 

Caffeine 
3,4-Dimethylaniline 

1.8 

3 60:40:00 
60:00:40 
30:70:00 
20:40:40 

3.0 Benzonitrile 
Caffeine 

2,5-Dimethylbenzoic acid 
Salicylic acid 

2.7 

* Percent volume of water-methanol-acetonitrile. 

Table V. Average Prediction Errors Associated with Each Compound 

% Average prediction error* 

pH 7 pH 5 pH 3 

Compound C S C s C S 

Acetopheonone 1.9 1.7 2.0 2.1 1.0 2.9 
Benzene 2.7 2.9 2.2 2.5 1.5 4.4 
Benzonitrile 2.3 1.7 3.0 2.9 k 2.9 
o-Dichlorobenzene k 2.0 k 0.8 3.0 3.6 
p-Dinitrobenzene 2.8 1.3 k 1.2 4.0 4.4 
Methylbenzoate 1.0 1.0 1.4 1.4 1.4 2.6 
2-Phenylethyl alcohol 3.0 3.1 2.6 3.6 2.0 2.5 
Toluene 2.8 2.8 2.2 2.5 1.4 2.6 
Caffeine k 2.8 k 2.7 k 3.3 
4-Chloroaniline 1.6 2.1 1.5 1.6 2.9 3.2 
Ν,Ν-Dimethylaniline 2.5 1.8 1.5 1.8 7.1 9.7 
2,6-Dimethylaniline k 0.9 0.7 0.8 2.3 2.1 
3,4-Dimethylaniline 0.7 1.0 k 0.8 4.4 5.2 
Pyridine k 2.3 2.8 3.0 4.4 3.9 
4-tert-Butylpyridine 3.4 2.5 1.2 2.7 6.1 7.3 
2-Aminopyridine 1.9 2.6 6.3 4.6 3.5 4.6 
Quinoline 2.6 1.6 2.3 2.4 3.1 3.4 
3-Aminoquinoline 3.1 2.5 2.7 2.4 4.8 5.5 
Benzoic acid 1.6 1.4 
p-Fluorobenzoic acid 3.4 4.3 
4-Aminobenzoic acid 6.7 6.7 
2-Chlorobenzoic acid 2.8 4.4 
4-Chlorobenzoic acid 1.2 1.4 
2,5-Dimethylbenzoic acid k 1.3 
3,4-Dimethylbenzoic acid 0.5 1.5 
Salicylic acid k 4.6 

* Symbols: C, data were predicted by using four key compounds; S, data were predicted by using four key solvents; 
k, key compounds. 
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examined by running the eight standard solutes in three solvent 
systems: 70:30:00,60:00:40, and 50:37.5:12.5 (percent volume 
water-methanol-acetonitrile). The results showed that the 
characteristics of the columns in the same batch were similar 
to each other but slightly different from the other batch. So the 
columns with the most similar characteristics were selected to 
collect the data. In order to assure reliable results, the charac­
teristics of the column in use were periodically checked. If the 
retention behavior of the standard solutes in the three mobile 
phases changed significantly, then the column was replaced 
with a new column. The characteristics of one column changed 
significantly after running pH 2.3 buffered mobile phases; 
therefore, pH 3 was the most acidic system studied. One 
column had to be discarded when it was contaminated by 
buffered solvent in which microorganisms had started to grow. 

Principal component factor analysis 
The indicator function (3), reduced eigenvalue (4), Mali-

nowski's probability test (5), and the error in data reproduction 
were applied to estimate the proper number of factors in this 
study. The reduced eigenvalue method assumes that the eigen­
values associated with random error factors should be statisti­
cally equal and should begin to level off when extra factors are 
employed. The indicator function, which is an empirical func­
tion, should reach a minimum value when the correct number 
of factors is reached. The probability test estimates the proper 
number of real factors by using an F-Test. In this study, a sig­
nificance level of 5% was used to pick out the proper number 
of real factors; a probability of less than .05 indicated that the 
factor is a real factor. Table III shows the results of these 

% Average prediction error* 

pH 7 pH 5 pH 3 

Solvent no. C s C s C S 

1 1.9 k 4.2 3.7 4.0 k 
2 2.4 1.7 1.6 k 2.5 4.5 
3 2.6 1.8 3.5 4.2 3.8 k 
4 1.4 2.0 0.9 k 3.9 3.8 
5 1.0 k 1.5 1.7 3.1 4.5 
6 2.1 1.2 2.9 2.2 3.7 4.0 
7 1.8 2.1 2.1 1.5 4.0 4.5 

8 2.2 k 1.9 k 4.0 4.4 
9 2.7 2.6 3.5 2.3 2.6 3.6 

10 2.3 1.6 2.2 1.4 3.2 4.2 
11 1.7 1.2 0.8 0.8 2.2 3.9 
12 3.7 3.2 2.0 1.4 3.0 4.2 
13 2.9 2.4 2.7 2.0 2.6 k 
14 1.0 k 1.1 k 3.2 3.2 
15 2.3 1.5 1.3 1.5 2.4 3.1 
16 2.1 1.9 3.5 2.6 3.1 3.9 
17 4.5 3.7 3.1 2.4 4.4 4.1 
18 2.3 1.2 2.0 2.2 1.9 1.7 
19 2.8 2.1 3.1 3.4 2.2 k 

methods to determine the minimum number of real factors re­
quired to reasonably reproduce the data. Unfortunately, there is 
no clear agreement about the factor numbers for all pHs (7,5, 
and 3). The reduced eigenvalue indicated three factors were im­
portant for all pHs. The indicator function failed to predict the 
correct factor numbers for all pHs. The probability test sug­
gested 5,7, and 8 factors were important for pH 7, pH 5, and pH 
3, respectively; however, Table IV shows the reproduction errors 
based on four typical factors for all pHs were within a reason­
able error range. Therefore, four factors were used as the sig­
nificant factors as they are sufficient to reasonably reproduce 
the data while keeping the prediction model relatively simple. 

The discovery that four factors are needed to successfully 
predict the retention of ionized species makes sense chemically. 
Adding the potential to be ionized might be expected to add a 
factor to an abstract model that is used to describe the be­
havior of netural species and that requires only three factors. 
The result is both chemically and chemometrically satisfying. 

Target transformation factor analysis and combination test 
Target tests were performed on all combinations of four sol­

vents. The combination set with the minimum root-mean-
square reproduction error was selected as the key combination 
set. The solvents in this key combination set are called the key 
solvents. Then, the data matrix was transposed, and target tests 
were performed on all combinations of the four compounds. 
The key compounds were selected in a similar way. The key sol­
vent and compound combination sets for pH 7, pH 5, and pH 3 
are listed in Table IV. The procedure of reproducing the data 
based on the four key solvents was as follows. First, these four 

key solvents that served as the target matrix 
were used to obtain the solvent projection 
matrix, P, by using Equation 7. Then, the 
reproduction was achieved by using Equa­
tion 8. Also, the data were reproduced by 
using the key compounds with the same 
method. The reproduction errors associated 
with the key combination sets for pH 7, pH 5, 
and pH 3 are listed in Table IV. The mean re­
production errors shown in Table IV are the 
mean values of the errors obtained from 
Equation 10. 

Eq 10 

The average prediction errors associated 
with each compound and solvent are listed in 
Tables V and VI, respectively. Also, the results 
of the reproduction obtained by using the key 
solvents are graphically shown in Figures 2-4. 
The predictions were made over capacity factor 
ranges from 0.3 to 87,0.3 to 86, and 0.1 to 85 
at pH 7, pH 5, and pH 3, respectively. The re­
sults of the reproduction based on the key 
compounds are not shown but were very sim­
ilar to Figures 2-4. 
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Table VI. Average Prediction Errors Associated with Each Solvent 

* Symbols: C, data were predicted by using four key compounds; S, data were predicted by using four key solvents; 
k, key compounds. 
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Predictive strategy 
The prediction can be extended to a new compound by using 

equation 11. 

This retention prediction method can also be extended to a 
new solvent in a similar way. The only required measurements 
are the retention values of the key compounds in the new sol­
vent, then the prediction of the other compounds of the data 
matrix can be obtained. 

If a new column is used, then a new core matrix is required 
to construct the solvent/compound projections. The core ma­
trix contains the retention of each key compound in each key 
solvent. It may be necessary to add a fifth compound to the core 
matrix to avoid near-singularity problems in singular value de­
composition under some conditions. Therefore, the size of the 
core matrix may be increased to 5 χ 4. The procedure for get­
ting the projections of a new solvent χ on each key solvent is 
first to obtain the retention measurements of the key com-
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Eq l l 

where aij is the predicted natural logarithm of the capacity 
factor (In k') of the new compound i in the mobile phase j , km 

is the 1n k' of compound i in the key solvent n, and p n j is the 
projection of solvent j on the key solvent n. Note that the sol­
vent projections can be obtained from Equation 7 and are 
known. Therefore, only four retention measurements are re­
quired (the retention of the new compound in the four key 
solvents) to get the prediction in the other 15 solvents. 

Figure 2. Predicted capacity factors of neutral (a) and basic (b) compounds 
at pH 7 based on the following percent volumes of key solvents 
(water-methanol-acetonitrile) versus the experimental capacity factors: 
60:40:00, 50:25:25, 50:00:50, and 30:52.5:17.5. 

Figure 3. Predicted capacity factors of neutral (a) and basic (b) compounds 
at pH 5 based on the following percent volumes of key solvents 
(water-methanol-acetonitrile) versus the experimental capacity factors: 
60:30:10, 50:50:00, 50:00:50, and 30:52.5:17.5. 
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Figure 4. Predicted capacity factors of neutral (a), basic (b), and acidic (c) compounds at pH 3 based on the following percent volumes of key solvents 
(water-methanol-acetonitrile) versus the experimental capacity factors: 60:40:00, 60:00:40, 30:70:00, and 20:40:40. 

pounds in the new solvent χ and then append these measure­
ments to the core matrix. By performing a target test on the ap­
pended core matrix with the core matrix serving as the target 
matrix, the projections of the solvent x on the key solvent can 
be obtained from Equation 7. The method to obtain the com­
pound projections is similar to the method of getting the sol­
vent projections; the retention value of the new compound in 
the key solvents is appended to the transposed core matrix, 
and the procedures described earlier are followed. 

Conclusion 

It has been shown that the factor analytical model can be ex­
tended to ionic compounds. The retention behavior of ionic 
compounds was accurately described with four factors. Con­
trolling the pH with simple buffers permits this method to be 
extended to ionic compounds, validating the assumption that 

the change in solvent composition does not significantly affect 
the degree of ionization of the solutes. 
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